24 research outputs found

    Adaptivität und semantische Interoperabilität von Manufacturing Execution Systemen (MES)

    Get PDF
    MES (Manufacturing Execution Systems) are situated between automation and management level and are affected from changes of the production. Therefore their adaptivity within the lifecycle of production plants is mission critical. Furthermore MES act as data and information hub. This means that they have to work together with other systems in an efficient and seamless way. MES must be interoperable and must have semantics under control. The present publication faces both aspects

    Adaptivität und semantische Interoperabilität von Manufacturing Execution Systemen (MES)

    Get PDF

    SecurePLUGandWORK – Abschlussbericht

    Get PDF
    Industrie 4.0 umfasst unter anderem intelligente Anlagenkomponenten, Maschinen und Anlagen sowie IT-Systeme, die miteinander vernetzt und über die relevanten ‚Partner\u27 mit ihren Fähigkeiten informiert sind. Bei einem Neuaufbau oder Umbau von Anlagen, Maschinen und Komponenten können alle Partner auf die Veränderung entsprechend reagieren. Änderungen sind beispielsweise in der eingebetteten Software der Feldgeräte, im Programmcode der Steuerungen, aber auch in überlagerten IT-Systemen wie bspw. MES nötig

    Adaptivität und semantische Interoperabilität von Manufacturing Execution Systemen (MES)

    Get PDF
    MES (Manufacturing Execution Systems) sind zwischen der Automatisierungs- und der Unternehmensleitebene von Änderungen in der Produktion betroffen. Darum ist ihre Adaptivität im Lebenszyklus der Produktionsanlagen erfolgskritisch. Zusätzlich agieren MES als Daten- und Informationsdrehscheibe. Daher müssen sie möglichst gut und nahtlos mit anderen Systemen zusammenarbeiten: MES müssen interoperabel werden und dabei die Semantik im Griff haben. Die vorliegende Arbeit begegnet beiden Aspekten

    Intelligent environment for mechatronic, cross-discipline plant engineering

    No full text
    The plant planning process is a complex process with many different disciplines involved. It consists of multiple process steps which are executed sequentially. All the different disciplines work on the common planning object - the plant - consisting of complex mechatronic objects and parts. Nevertheless, the disciplines work spatially and technically separated from each other within their isolated planning steps. Cooperation is only practiced at specific points of the plant planning process. The Digital Engineering Table (DigET) enables the necessary interpersonal and interdisciplinary cooperation in an interactive environment and uses therefore the integrated data exchange format AutomationML. This contribution describes the requirements and decisions for the necessary middleware as coordinating infrastructure

    Three-view-concept for modeling process or manufacturing plants with AutomationML

    No full text
    AutomationML (Automation Markup Language) is an XML based data format for the exchange of plant engineering information. Its mission is to interconnect engineering tools of different disciplines, e.g. process, mechanical or control engineering. AutomationML enables the vendor independent storage of interlinked engineering data that is usually distributed into different engineering tools. This enables a wide range of future tool functionality not available and not possible today. For this, AutomationML defines a number of extended concepts for different engineering aspects. One of them is the process-resource-product concept which was introduced with version 1.1 and published at the Hannover trade fair 2009. This paper explains this concept by means of an industrial example
    corecore